1. Prepare pictures

  2. Label by roboflow

  3. Create Model by Python and YOLOv5

    image.png

    !python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images
    # display.Image(filename='runs/detect/exp/zidane.jpg', width=600)
    
    # Paths to the dataset
    train: /content/drive/MyDrive/dataset/images/train  # เส้นทางไปยังไฟล์ภาพสำหรับการฝึก
    val: /content/drive/MyDrive/dataset/images/valid    # เส้นทางไปยังไฟล์ภาพสำหรับการทดสอบ
    test: /content/drive/MyDrive/dataset/images/test    # เส้นทางไปยังไฟล์ภาพสำหรับการทดสอบ (หากมี)
    
    # จำนวนคลาส (7 คลาสในกรณีนี้)
    nc: 7
    
    # ชื่อของคลาสที่ใช้
    names: ['good', 'defect', 'peeling', 'moldy', 'atrophy', 'broken', 'spot']
    
    
    # Ultralytics YOLOv5 🚀, AGPL-3.0 license
    
    # Parameters
    nc: 7 # number of classes
    depth_multiple: 0.33 # model depth multiple
    width_multiple: 0.50 # layer channel multiple
    anchors:
      - [10, 13, 16, 30, 33, 23] # P3/8
      - [30, 61, 62, 45, 59, 119] # P4/16
      - [116, 90, 156, 198, 373, 326] # P5/32
    
    # YOLOv5 v6.0 backbone
    backbone:
      # [from, number, module, args]
      [
        [-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
        [-1, 1, Conv, [128, 3, 2]], # 1-P2/4
        [-1, 3, C3, [128]],
        [-1, 1, Conv, [256, 3, 2]], # 3-P3/8
        [-1, 6, C3, [256]],
        [-1, 1, Conv, [512, 3, 2]], # 5-P4/16
        [-1, 9, C3, [512]],
        [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
        [-1, 3, C3, [1024]],
        [-1, 1, SPPF, [1024, 5]], # 9
      ]
    
    # YOLOv5 v6.0 head
    head: [
        [-1, 1, Conv, [512, 1, 1]],
        [-1, 1, nn.Upsample, [None, 2, "nearest"]],
        [[-1, 6], 1, Concat, [1]], # cat backbone P4
        [-1, 3, C3, [512, False]], # 13
    
        [-1, 1, Conv, [256, 1, 1]],
        [-1, 1, nn.Upsample, [None, 2, "nearest"]],
        [[-1, 4], 1, Concat, [1]], # cat backbone P3
        [-1, 3, C3, [256, False]], # 17 (P3/8-small)
    
        [-1, 1, Conv, [256, 3, 2]],
        [[-1, 14], 1, Concat, [1]], # cat head P4
        [-1, 3, C3, [512, False]], # 20 (P4/16-medium)
    
        [-1, 1, Conv, [512, 3, 2]],
        [[-1, 10], 1, Concat, [1]], # cat head P5
        [-1, 3, C3, [1024, False]], # 23 (P5/32-large)
    
        [[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
      ]
    
    
    #@title Select YOLOv5 🚀 logger {run: 'auto'}
    logger = 'Comet' #@param ['Comet', 'ClearML', 'TensorBoard']
    
    if logger == 'Comet':
      %pip install -q comet_ml
      import comet_ml; comet_ml.init()
    elif logger == 'ClearML':
      %pip install -q clearml
      import clearml; clearml.browser_login()
    elif logger == 'TensorBoard':
      %load_ext tensorboard
      %tensorboard --logdir runs/train
    
    # Train YOLOv5s on COCO128 for 3 epochs
    !python train.py --img 640 --batch 16 --epochs 3 --data coco128.yaml --weights yolov5s.pt --cache
    
  4. Create Model by Python and YOLOv8

  5. Create Model by Python and YOLOv11